HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs
نویسندگان
چکیده
An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.
منابع مشابه
Local Positioning System Using Flickering Infrared LEDs
A minimalistic optical sensing device for the indoor localization is proposed to estimate the relative position between the sensor and active markers using amplitude modulated infrared light. The innovative insect-based sensor can measure azimuth and elevation angles with respect to two small and cheap active infrared light emitting diodes (LEDs) flickering at two different frequencies. In comp...
متن کاملAuto - Pilot : Autonomous Control of a remote controlled helicopter
An auto-pilot system was created which could track and control a Syma S107 RC mini infrared helicopter in real-time. The helicopter was tracked using two LEDs attached to it, one situated on the front of the helicopter and one situated on the tail. Image processing and object tracking algorithms were used to track the position of the helicopter. In order to perform real-time tracking, the metho...
متن کاملHandheld Device for Remotely Measuring Brain Function
Infants, and especially premature infants, are carefully monitored while in their incubators, and their brain health is of great concern. While it is currently the preferred procedure to attach a device to a patient’s forehead for monitoring pulse rate and oxygen levels in the brain, the development of a remote handheld system would make it possible to spot check patients from a distance, witho...
متن کاملAalborg Universitet Retrieval of 3D-position of a Passive Object Using Infrared LED ́s and Photodiodes
A sensor using infrared emitter/receiver pairs to determine the position of a passive object is presented. An array with a small number of infrared emitter/receiver pairs are proposed as sensing part to acquire information on the object position. The emitters illuminates the object and the intensity of the light reflected by the object is measured by the receivers. The emitter/receiver pairs ar...
متن کاملA Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)
This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...
متن کامل